
Journal of Approximation Theory 137 (2005) 179–186
www.elsevier.com/locate/jat

The zeros of linear combinations of orthogonal
polynomials

A.F. Beardona, K.A. Driverb,∗,1

aCentre for Mathematical Studies, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WB, UK
bThe John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of the

Witwatersrand, Private Bag 3, Johannnesburg 2050, South Africa

Received 15 June 2004; accepted 6 September 2005

Communicated by A.B.J. Kuijlaars
Available online 7 November 2005

Abstract

Let {pn} be a sequence of monic polynomials with pn of degree n, that are orthogonal with respect to a
suitable Borel measure on the real line. Stieltjes showed that if m < n and x1, . . . , xn are the zeros of pn

with x1 < · · · < xn then there are m distinct intervals f the form (xj , xj+1) each containing one zero of pm.
Our main theorem proves a similar result with pm replaced by some linear combinations of p1, . . . , pm.
The interlacing of the zeros of linear combinations of two and three adjacent orthogonal polynomials is also
discussed.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper examines interlacing properties of the zeros of linear combinations of orthogonal
polynomials. Throughout this paper, � will denote a positive Borel measure on R with the prop-
erty that every real polynomial p is �-integrable over R with

∫
p2d� > 0 unless p is the zero

polynomial. We shall say that such a measure � is admissible. Any admissible measure � induces a
scalar product 〈p, q〉 (the integral of the product pq with respect to �) on the vector space P of real
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polynomials, and this leads to a unique sequence p0, p1, . . . of mutually orthogonal polynomials,
where pn is monic and of degree n. It is well known that the n zeros of pn are real and distinct, and
that they lie in the interior I (�) of the convex hull of the support of �. In his fundamental paper
[10] Shohat considered linear combinations of orthogonal polynomials, and he observed ([10],
p. 465) that the usual proof that pn has its n zeros in I (�) actually proves the stronger statement
that any linear combination P = asps + · · · + anpn, where s�n and asan �= 0, has at least s
distinct zeros in I (�). This result is best possible as can be seen, for example, from the discussion
in Chapter 6, [11], regarding the zeros of the Jacobi and Laguerre polynomials (see also Section
7 of this paper). We note that the existence of at least s odd order zeros of P in I (�) is also an
immediate consequence of the quasi-orthogonality of P (cf. [2]).

It is well known that the n − 1 zeros of pn−1 are distinct from those of pn, and they in-
terlace with the zeros of pn in the sense that exactly one zero of pn−1 lies between any two
consecutive zeros of pn. Stieltjes proved a stronger result than this, namely that the zeros of
pm and pn are interlaced whenever m < n in the sense that if x1, . . . , xn are the zeros of
pn with x1 < · · · < xn, then there are m disjoint intervals of the form (xj , xj+1) such that
each contains a zero of pm (see [1], p. 253 and [11], Theorem 3.3.3, p. 45). Recently, Gibson
[5] noted that Stieltjes’ result implies that pm and pm+k have at most min{m, k − 1} common
zeros. The interlacing of zeros of two polynomials of consecutive degrees is useful in other
contexts. For example, it occurs in connection with associated polynomials; see [8]. Interlacing
also plays a role in the study of polynomials satisfying a three-term recurrence relation (see [8],
[12]).

Our main result (Theorem 3.1) extends Stieltjes’ result, and is concerned with the interlacing
of the zeros of the polynomial � used to generate a quadrature formula (where � may, but need
not, be pn) and the zeros of the linear combination asps +· · ·+ampm, where s�m�n. Theorem
3.1 is stated and proved in Section 3, following a brief discussion in Section 2 of the degree of
precision of a quadrature formula. In Section 4, we recall some standard results of the Wronskian
of two polynomials, which we use in Sections 5 and 6 to discuss linear combinations of two and
three adjacent orthogonal polynomials, respectively. In Section 7, we comment on some results
in Szegö [11] and Shohat [10].

2. The degree of precision

Let �(x) = (x − c1) · · · (x − cn), where the cj are any real numbers with c1 < · · · < cn.
A quadrature formula for the triple (�, �, �), where � is an admissible measure �, and � =
(�1, . . . , �n) ∈ Rn, is a formula of the form

∫
R

p d� =
n∑

j=1

�jp(cj ) (2.1)

that is valid for all polynomials p in some class Q. Obviously, one wants to identify the class Q
once �, � and the �j are given. It is clear that (2.1) fails when p(x) = �(x)2, which is of degree
2n, regardless of � and the �j , because the integral in (2.1) is positive while the sum is zero. On
the other hand, (2.1) holds for all polynomials p of degree at most n − 1 providing that we make
an appropriate choice of the �j . Lagrange’s interpolation formula shows that there are unique
polynomials �j , of degree n − 1, such that �j (cj ) = 1 and �j (ck) = 0 when k �= j , and we use
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these to define the Cotes numbers �j by

�j =
∫

R
�j d�. (2.2)

The operator p �→ p∗, defined by

p∗(x) =
n∑

j=1

�j (x)p(cj ),

has the property that p∗(ck) = p(ck) for k = 1, . . . , n. It follows immediately that if p is any
polynomial of degree at most n − 1, then p∗ = p and (2.1) holds since

∫
R

p d� =
∫

R
p∗ d� =

n∑
j=1

p(cj )

∫
R

�j d� =
n∑

j=1

�jp(cj ).

This discussion shows that, given the pair (�, �), and the �j defined by (2.2), there is an integer
d(�, �) that satisfies

n − 1�d(�, �)�2n − 1

and which is such that (2.1) holds for all polynomials of degree d(�, �) but not for all polynomials
of higher degree. Shohat calls d(�, �) the degree of precision of (�, �). Roughly speaking, the
degree of precision increases as the relationship between � and the orthogonal pn associated with
� increases. In general, d(�, �) = n − 1. In Theorem 1 ([10], p. 465) Shohat proves that (�, �)

has degree of precision (n − 1) + s if and only if � = asps + · · · + anpn, where asan �= 0.
This tells us that the degree of precision is 2n − 1 if and only if � = pn, and we may view this
as an algorithm to find the optimal choice for � for a given � rather than as an application of
the quadrature formula to orthogonal polynomials. Of course, Shohat’s result shows that if the
degree of precision is n − 1 then � is a linear combination of p0, . . . , pn, and hence can be any
polynomial of degree n.

3. The main result

Our main result suggests that the property of interlacing of zeros is inherited from the positivity
of the Cotes numbers in a quadrature formula rather than directly from orthogonality.

Theorem 3.1. Let � be an admissible measure and let {pk} be the sequence of monic �-orthogonal
polynomials. Let

�(x) = (x − c1) · · · (x − cn),

where c1 < · · · < cn, and suppose that all of the Cotes numbers �j defined by (2.2) are positive.
Let P = asps + · · · + ampm, where asam �= 0, 1�s�m�n, and m�d(�, �). Then either (i) P
is a non-zero scalar multiple of �, or (ii) at least N of the intervals (cj , cj+1) contain a zero of
P, where N = min{s, d(�, �) + 1 − m}�1.

Proof. Take any polynomial Q such that deg(Q) < N ; then

deg(PQ) = deg(P ) + deg(Q)�m + (N − 1)�d(�, �),
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so that the quadrature formula applies to PQ. Because deg(Q) < N �s we see that Q is orthogonal
to P, and hence

n∑
j=1

�jP (cj )Q(cj ) =
∫

R
PQ d� = 0. (3.1)

This holds for any Q with deg(Q) < N .
We suppose now that (i) fails, and we show that (ii) holds. As (i) fails and deg(P )�deg(�),

there is some cj such that P(cj ) �= 0. Suppose, for the moment, that there is only one value of j
such that P(cj ) �= 0, and let this value be �. We now take Q ≡ 1. Then, as deg(Q) = 0 < 1�N ,
we see that (3.1) holds and we obtain

0 =
n∑

j=1

�jP (cj ) = ��P (c�) �= 0.

We conclude that there are at least two zeros cj of � that are not zeros of P. Now let the set of
zeros of � that are not zeros of P be cj1 , . . . , cjt , where t �2 and j1 < j2 < · · · < jt , and, for
brevity, write Xk = cjk

. Then, for any Q with deg(Q) < N ,

t∑
k=1

�jk
P (Xk)Q(Xk) =

n∑
j=1

�jP (cj )Q(cj ) = 0. (3.2)

Now X1 < · · · < Xt , where t �2. For each k = 1, . . . , t − 1, let yk be any point in
the interval (Xk, Xk+1). For each k, P(Xk)P (Xk+1) is either positive or negative, and we let
�(x) = ∏

(x − yk), where this product is over all k for which P(Xk)P (Xk+1) < 0. If no
such k exist we put �(x) ≡ 1. Thus � has a single (and simple) zero in (Xk, Xk+1) if and only
if P(Xk)P (Xk+1) < 0. It follows that for each k, �(Xk)�(Xk+1) and P(Xk)P (Xk+1) have
the same sign, so that

�(Xk)P (Xk)�(Xk+1)P (Xk+1) > 0, k = 1, . . . , t − 1.

We deduce that, for each k, the non-zero terms P(Xk)�(Xk) and P(Xk+1)�(Xk+1) have the
same sign, and this implies that

t∑
k=1

�jk
P (Xk)�(Xk) �= 0, (3.3)

because we have assumed that the �j are positive. This shows that

deg(�)�N = min{s, d(�, �) + 1 − m} (3.4)

because otherwise, we could take Q = � and obtain a contradiction from (3.2) and (3.3). As (3.4)
implies the conclusion of Theorem 3.1, this completes the proof. �

Remark. For each j = 1, . . . , n, the Cotes number �j defined by (2.2) depends on � and the
interpolation points (or nodes) c1, . . . , cn. A central assumption in Theorem 3.1 is the positivity
of �j for j = 1, . . . , n. It is well known that if � = pn, or if � = pn + apn−1 ([7], Theorem
III), then all the Cotes numbers are positive. In [6], Peherstorfer gives a characterization of the
real numbers c1, . . . , cn which ensures the positivity of the Cotes numbers �j . Further, in [7] with
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I (�) = (−1, 1), Peherstorfer derives sufficient conditions on the real numbers aj , j = 0, . . . , m

such that the linear combination of orthogonal polynomials P̂ = a0pn + · · · + ampn−m has n
simple zeros in (−1, 1) and the Cotes numbers corresponding to Lagrange interpolation at the
zeros of P̂ are positive.

Theorem 3.1 contains the following generalization of Stieltjes’ result (which is the case 1�s =
m < n below).

Theorem 3.2. Let {pk} be a �-orthogonal sequence of monic polynomials, with pk of degree k,
and suppose that x1, . . . , xn are the zeros of pn with x1 < · · · < xn. Let P = asps +· · ·+ampm,
where asam �= 0, 1�s�m�n and s < n. Then there are at least s disjoint intervals (xj , xj+1)

that contain at least one zero of P.

Proof. We take � = pn in Theorem 3.1. Then xj = cj for each j, and m�n�2n− 1 = d(�, �).
The fact that s < n means that P is not a scalar multiple of � (which is pn), and this eliminates
the possibility (i) in Theorem 3.1. Finally, as 2n > m + s, we have

d(�, �) + 1 − m = (2n − 1) + 1 − m > s,

so that N = s. The conclusion now follows from Theorem 3.1(ii). �

Moreover, it is well known that when � = pn all of the �j are positive.

4. The Wronskian

We recall some known facts about the Wronskian

W(x; p, q) =
∣∣∣∣ p(x) q(x)

p′(x) q ′(x)

∣∣∣∣ = p(x)q ′(x) − p′(x)q(x)

of two polynomials p and q. Since the Wronskian is linear in p and in q, it is potentially useful in
any discussion of linear combinations of polynomials. Also, if W(x; p, q) is non-zero in an open
interval J, then (i) p and q have no common zeros in J (else W would have a zero row), and (ii)
any zero of p and q in J is a simple zero (else W would have a zero column).

Moreover, if W(x; p, q) �= 0 for all x in an open interval j, then (iii) any two consecutive
zeros of p in J are separated by a zero of P, and (iv) any two consecutive zeros of q in J are
separated by a zero of p. Indeed, if u and v are consecutive zeros of p then (as they are simple
zeros) p′(u)p′(v) < 0. However, as W does not change sign in j we have q(u)p′(u)q(v)p′(v) =
W(u; p, q)W(v; p, q) > 0, so that q(u)q(v) < 0. Thus q has a zero in (u, v) and (iii) holds. Of
course, (iv) holds as we can interchange p and q. It is known that for orthogonal polynomials pn,
we have

W(x; pk, pk+1) > 0 (4.1)

throughout R ([10], p. 43), and this implies that the zeros of pn and pn+1 are interlaced.

5. Linear combinations of two adjacent polynomials

In this section, we discuss linear combinations of the form apn + bpn+1. A comparison of
the zeros of pn+1 and apn + bpn+1 occurs in [2], and in [9], but not between two such linear
combinations.
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Theorem 5.1. If a and b are real and not both zero, then every zero of apn + bpn+1 is real
and simple. Further, apn + bpn+1 and cpn + dpn+1 have no common zeros, and their zeros are
interlaced, unless one combination is a scalar multiple of the other.

Proof. Theorem 3.1 shows that if a and b are real and not both zero then apn + bpn+1 has at least
n real zeros. Thus all of its zeros are real. Now suppose that ad − bc �= 0. Then, from (4.1) and
the linearity of the Wronskian,

W(x; apn + bpn+1, cpn + dpn+1) = (ad − bc)W(x; pn, pn+1) �= 0

on R. Thus if ad −bc �= 0 then apn +bpn+1 and cpn +dpn+1 have only simple zeros, no common
zeros, and their zeros are interlaced. �

We now consider the interlacing of the zeros of the combinations apn + bpn+1 and asps +
· · · + an+1pn+1. If we take � = pn + apn+1 in the discussion above, then all Cotes numbers are
positive ([7], Theorem III, p. 465). Thus we obtain the following corollary of Theorem 3.1.

Theorem 5.2. Let P = asps+· · ·+an+1pn+1, where asan+1 �= 0, 1�s�n+1. Let x1, . . . , xn+1
be the zeros of pn + apn+1, labelled so that xj < xj+1. Then there are at least s disjoint intervals
(xj , xj+1) each of which contains a zero of P.

We remark that Theorem 5.1 does not generalize to linear combinations of three polynomials.
Consider, for example, the orthogonal polynomials generated by the recurrence relation p0(x) =
1, p1(x) = x and pn+2(x) = xpn+1(x)−pn(x). Then p3(x), p4(x) and p5(x) are, respectively,
x3 − 2x, x4 − 3x2 + 1 and x5 − 4x3 + 3x. In this case the zeros of the two combinations
p3 + p4 + p5 and 7p3 + 7p4 + 5p5 are not interlaced.

6. Three polynomials of consecutive degrees

In [10] Shohat discussed the linear combination

P = apn−2 + bpn−1 + pn (6.1)

and showed (Theorem VII, p. 472) that if a < 0 then P has only real simple zeros. This combin-
ation is also discussed in Theorem 2.5, [2], where it is shown that if a < 0 then the n − 1 zeros
of pn−1 interlace with the zeros of P. Actually, both of these facts are easy consequences of the
linearity of the Wronskian for

W(x; pn−1, P ) = W(x; pn−1, pn) − aW(x; pn−2, pn−1).

If a < 0 then W(x; pn−1, P ) > 0 throughout R and hence, by (i)–(iii) in Section 4, P has only
simple zeros in R, none of which are zeros of pn−1, and the zeros of P and pn−1 are interlaced.

In Theorem VII (p. 472) Shohat asserts that if the polynomial � in a quadrature formula is
taken to be P as in (6.1), and if a < 0, then all of the Cotes numbers �j are positive. It follows
that Theorem 3.1 is applicable, and since s�n − 2 and d(�, �) = 2n − 3, it implies that

N = min
{
s, (2n − 3) + 1 − m

}
� min

{
s, (2n − 3) + 1 − n

} = s,

which yields the following result.
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Theorem 6.1. Let � be an admissible Borel measure on R, and let {pn} be the sequence of monic
�-orthogonal polynomials. Let � = apn−2 + bpn−1 + pn, where a < 0, with zeros c1, . . . , cn,
where c1 < · · · < cn, and let P = asps + · · · + ampm, where asam �= 0, 1�s�m�n and
s�n − 2. Then either P is a non-zero scalar multiple of �, or there are s disjoint intervals
(cj , cj+1) that contain at least one zero of P.

We conclude this section by considering the extent to which the interlacing of the zeros of three
arbitrary polynomials qn, qn+1 and qn+2, where each qk has degree k, determines whether or not
they can be embedded in an orthogonal sequence. It is known [12] that a necessary and sufficient
condition for real polynomials p and q, of degrees n and n + 1, respectively, to be embedded in
an orthogonal sequence (with respect to some measure �) is that their zeros interlace. It is easy
to see that this result cannot be extended to three polynomials of degrees n, n + 1 and n + 2, so
we now ask what the conditions are on three such polynomials that will guarantee that they lie in
an orthogonal sequence? The answer to this lies in the following slightly more general result.

Theorem 6.2. Let qn−1, qn and qn+1 be monic complex polynomials of degrees n − 1, n and
n + 1, respectively. Suppose that qn has n distinct zeros y1, . . . , yn, and that these are not zeros
of qn−1. Then qn−1, qn and qn+1 satisfy a relation of the form

qn+1(z) = (z + an)qn(z) + bnqn−1(z) (6.2)

if and only if

qn+1(y1)

qn−1(y1)
= · · · = qn+1(yn)

qn−1(yn)
. (6.3)

The proof is easy. Suppose throughout that the qk satisfy the assumptions in Theorem 6.2. If
they also satisfy (6.2) then, with z = yk , we obtain (6.3). Now suppose that the qk satisfy (6.3),
and let bn be the common value of the ratios in (6.3). Then qn+1(z) − bnqn−1(z) is a monic
polynomial of degree n + 1 that is zero at each yj , and so is divisible by qn. Thus (6.2) holds for
some an. �

7. Remarks on Shohat’s result

We consider Shohat’s result that any linear combination of �-orthogonal polynomials P =
asps + · · · + anpn, where s�n and asan �= 0, has at least s distinct zeros in I (�), and also
the fact that this is best possible. To see that P has at least s distinct zeros in I (�), let p∗(x) =
(x − y1) · · · (x − yv), where y1, . . . , yv are the distinct odd-order zeros of P that lie in I (�) (and
p∗(x) ≡ 1 if no such yi exist). Then

an

∫
R

P(x)p∗(x) d�(x) =
∫

R

[
anP (x)

p∗(x)

]
p∗(x)2 d�(x) > 0

because the two factors in the integrand of the second integral are non-negative in I (�). This
implies that P is not �-orthogonal to p∗, so that p∗ must have degree at least s. Thus P has at
least s distinct odd-order zeros in I (�).

We give a new, and simple, proof that this result is best possible. First, we recall Descartes’
Theorem that the number of positive zeros of a real polynomial is at most the number of sign
changes in the sequence of its coefficients. Here a sign change means passing from a positive
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coefficient to a negative coefficient, or from a negative coefficient to a positive coefficient, when,
if they are not adjacent coefficients, all coefficients between them are zero. Let us now apply this
to the sequence L�

n of Laguerre polynomials. These are defined by

n!L�
n(x) =

[(
n

0

)
(� + 1) · · · (� + n)

]
+

[
(−x)

(
n

1

)
(� + 2) · · · (� + n)

]

+
[
(−x)2

(
n

2

)
(� + 3) · · · (� + n)

]
+ · · ·

+
[
(−x)n−1

(
n

n − 1

)
(� + n)

]
+ (−x)n

and they form an orthogonal sequence with respect to the measure d�(x) = x�e−xdx on R when
� > −1 but not otherwise. If � > −1 then all of the products (� + k) · · · (� + n) are positive, and
there are n sign changes in Ln(x, �); thus (as we already know) Ln(x, �) has n zeros in (0, +∞).
As � decreases, the number of sign changes of L�

n decreases by one as � passes through each
negative integer −1, . . . , −n. Thus if N ∈ {1, . . . , n}, and −N −1 < � < −N , then L�

n(x) has at
most n − N zeros in (0, +∞). However, the Laguerre polynomials satisfy the functional relation

L�
n(x) = L�+1

n (x) − L�+1
n−1(x),

(see [1] and [2]) and it is evident from this that if −N − 1 < � < −N then L�
n is a linear

combination of L�+N
j , where j = n−N, . . . , n. We now see that this linear combination has (by

Shohat’s argument) at least n−N zeros in (0, +∞), and (by Descartes’ Theorem) at most n−N

zeros there. In conclusion, if −(N +1) < � < −N and 1�N �n, then L�
n is a linear combination

of L�+N
n−N, . . . , L�+N

n and this linear combination has exactly n − N zeros in (0, +∞).
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